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Abstract

This paper presents DPADL (Data Processing Action De-
scription Language), a language for describing planning do-
mains that involve data processing. DPADL is a declarative,
object-oriented language that supports constraints and em-
bedded Java code, object creation and copying, explicit inputs
and outputs for actions, and metadata descriptions of existing
and desired data. DPADL is supported by the IMAGEbot sys-
tem, which we are using to provide automation for an ecosys-
tem forecasting system called TOPS.

1 Introduction
NASA is a data-collection agency. Terabytes of data are
gathered each day by NASA telescopes, satellites and other
spacecraft, and processing these data is challenging. Current
approaches to data processing were devised when data vol-
umes were small and it was possible for scientists to “look
at” all the data. With the large data volumes now available,
increasing levels of automation are needed if scientists are to
avoid drowning in data. This is especially true in the Earth
Science Enterprise, where high bandwidth communication
makes it practical to return terabytes per day, and where the
wide variety of instruments and the even wider variety of
uses of the data make scripted approaches to automation too
labor intensive.

We are working with Earth scientists to help ad-
dress this challenge in the context of an ecosystem
forecasting system called the Terrestrial Observation and
Prediction System, or TOPS (Nemaniet al. 2002)
(http://www.forestry.umt.edu/ntsg/Projects/TOPS/). Our
approach is to cast the problem of automating data-
processing operations as a planning problem. We have de-
veloped a planner-based softbot (software robot), called IM-
AGEbot, to generate and execute dataflow programs (plans)
in response to data requests. The data processing operations
supported by IMAGEbot include image processing, text pro-
cessing, managing file archives and running scientific mod-
els. Aspects of the planner are described in (Golden & Frank
2002). In this paper, we describe the IMAGEbot action
language, which we call DPADL, for Data Processing Ac-
tion Description Language. DPADL is a successor to the
ADLIM language, described in (Golden 2000). A key re-
quirement of the language is to provide precise causal mod-
els of data-processing actions, which can be used either for

plan generation, or to derive metadata descriptions of the
outputs of a given plan.

Given the richness and complexity of software systems
and data-processing programs, the language used to describe
them must be expressive. Following are some features it
should support.

• First-class objects: Most things in the world and in soft-
ware environments can be viewed as objects with certain
attributes and relations to other objects. For example, a
person may be described in terms of name, address, work-
place, etc., while a file has a name, host location, owner,
etc. Even more importantly, data files typically have a
complex, hierarchical structure, which can be described
in terms of object composition. The language should sup-
port structures or objects as first-class citizens, to reflect
the underlying structure of the software environments it is
meant to describe.

• Object creation and copying: Many programs create new
objects, such as files, sometimes by copying or modifying
other objects. The language should have a simple way of
describing such operations.

• Operations on sets of objects: Many programs act on all
members of some set. For example,“lpr *” prints all
files in the current directory, and an image processing op-
eration may affect all pixels in an image or a specified re-
gion of an image. The language should support universal
quantification to describe such operations.

• Integration with a run-time environment: It is not suffi-
cient to generate plans; it is necessary to execute them,
so there must be a way to describe how to execute the
operations provided by the environment and obtain infor-
mation from the environment. The language should allow
the specification of “hooks” into the runtime environment,
both to obtain information and to initiate operations.

• Constraints: Determining the appropriate parameters for
an action can be challenging. Parameter values can de-
pend on other actions or objects in the plan. The lan-
guage should provide the ability to specify such con-
straints where they are needed.

We have developed a language for describing objects and
actions in a data-processing domain. The language provides
tight integration with the Java run-time environment. In par-
ticular, Java code can be embedded in the action descrip-



tions, planner variables can be bound to Java objects as well
as primitive types, and constraints can be enforced by invok-
ing methods on those objects.

In the remainder of the paper, we describe the language in
detail. The elements of a domain description include specifi-
cations of types (Section 2), functions and relations (Section
3), goals (Section 5), actions (Section 6) and states (Section
7). Definitions of types and functions can include constraints
(Section 4).

At the end of each section, we present a BNF grammar
covering the language elements described in that section.
The boxes containing these descriptions may be skipped by
readers unfamiliar with BNF notation or uninterested in the
formal specification.

For example, we have stated so far that domain descrip-
tions include types, function, goals, actions and states, and
can include embedded Java code. The top-level production
rule for a domain description is:

DOMAIN ::= (TYPE | FUNCTION | ACTION | GOAL

| STATE | <INLINE_CODE>)+ <EOF>

where symbols inSMALL CAPS are non-terminals, symbols
in <ANGLE_BRACKETS> are terminals, and keywords are
underlined.

2 Objects and primitive types
The language provides several predefined types, and sup-
ports the declaration of new types derived from the prede-
fined types. The keyword for introducing a new type decla-
ration is type . Here and elsewhere in the paper, DPADL
text is rendered intypewriter font, and keywords are
bold . We use ellipses (. . .) to indicate that text has been
omitted for the sake of brevity. For example,

static type Filename isa string

introduces a new type,Filename, which is a subtype of
string, a predefined type. The predefined types are int,
unsigned, real, string, object and boolean. The keyword
static means that no instance ofFilename, once created,
can ever be changed. A type that is not static isfluent .

Subtypes ofobject may be used to represent Java ob-
jects. For example,

static type Tile isa object
mapsto tops.modis.Tile

means that the typeTile corresponds to the Java class
tops.modis.Tile. As we discuss in Sections 4 and 6.4,
the agent can manipulate Java objects in the course of con-
straint reasoning or action execution by executing inlined
Java code.

Alternatively, we can define a type by listing all possible
instances of the type. This is similar to enumerated types in
C/C++, but without the restriction to integral values.

static type ImageFormat =
{"JPG", "GIF", "TIFF", "PNG", "XCF", . . .};

As in C/C++, enumerated values can have symbolic names
attached to them.

static type ProjectionType =
{LAZEA=11, GOODE_HOMOL=24, ROBINSON=21, . . .};

Like classes in C++ and Java, types can have attributes. For
example, file attributes include pathname and owner:

type File isa object {
static key Path pathname;
User owner;
. . .

}

The keywordkey is used to indicate thatpathname is a
unique identifier for a file, so two files that have the same
pathname must in fact be the same file. Identifying the path-
name as the key precludes the possibility of moving or re-
naming a file, or copying one file on top of another, since
those operations change the pathname without changing the
identity of the file, or vice versa. A more robust choice for a
key is the file’s “inode number,” a serial number assigned
to the file that stays the same even if the name or direc-
tory changes. Even that is imperfect, however, since two
files stored on different computers could have the same i-
node number. We can solve this problem by making the host
machine an additional key:

type File isa object {
static key int inodeNumber;
static key string hostName;
Path pathname;
User owner;
. . .

}

When an object has multiple keys, it is their combination
that uniquely identifies the object, so by the above definition,
two files are identical if they have the same host machineand
inode number.

In addition to the subtype relation, designated usingisa ,
we can specify that one typeimplements another, mean-
ing it inherits all the attributes of the other type but is not
an instance of that type. This is useful in cases where two
objects share the same structure but cannot be used inter-
changeably. For example, a file archive, such as a tar file,
contains records which reflect all the properties and con-
tents of individual files, but are not themselves files. We say
that TarFile.Record implements File. This is espe-
cially useful when used in conjunction withcopyof (Sec-
tion 6.3), since a record in a tar file can be a copy of a file,
or vice versa.

When referring to an attribute of an object, we use a
Java-like syntax. For example,f.filename refers to the
filename attribute of the object represented by the vari-
able f. Attributes can take arguments. For example,
pic.pixelValue(x,y) refers to the value of the pixel at
the x,y coordinates of the imagepic. Although the syntax
resembles that of Java method calls,pixelValue(x,y) is
simply a parameterized attribute, and can be used in exactly
the same contexts. For example,

pic2.pixelValue(10,10) := pic1.pixelValue(0,0);

describes an effect that sets the value of the pixel at coordi-
nates 10,10 in the imagepic2 to be equal to the value of the
pixel 0,0 in the imagepic1.



Object attributes may be thought of as a functions or
relations that are just written in a funny way. For ex-
ample, v = pic1.pixelValue(0,0) could just as easily
have been written as a function,v = pixelValue(pic1,
0, 0), or even a relation,pixelValue(v, pic1, 0, 0).

However, the object notation is not just syntactic sugar,
but provides valuable information to the planner. For
example, the planner can reduce search by exploiting the
fact that attributes of static objects don’t change once
the object is created, and Section 6.3 discusses the role
attributes play when objects are copied.

TYPE ::= (static | fluent)? type
((<IDENTIFIER> = { MEMBERS } )
| (TYPESPEC)) (TYPEBODY | ; )

MEMBERS ::= ((<IDENTIFIER> = )? LITERAL)
( , MEMBERS)?

TYPESPEC ::= PRIMTYPE | ( <IDENTIFIER> isa
TYPENAME

( implements TYPENAME )* )
( mapsto <CLASSNAME> )?

TYPEBODY ::= { ( MEMDEF | CTRSPEC | TYPE)* }
MEMDEF ::= ( static | fluent )? key? TYPENAME

<IDENTIFIER>
( PARAMS )? ( MEMBODY | ; )

MEMBODY ::= { ( CTRSPEC )* }
PRIMTYPE ::= int | unsigned | real | string |

object | boolean
TYPENAME ::= <IDENTIFIER> | PRIMTYPE

QUALTYPE ::= TYPENAME ( . <IDENTIFIER> )*

3 Functions and relations

As we said above, attributes may be viewed as functions or
relations. We can also have functions and relations that do
not correspond to object attributes. For example,

fluent real elevation(real lon, real lat);

declares a function that takes two real values, representing
longitude and latitude, and returns a real value representing
elevation. There is no special syntax for defining relations;
they are just functions whose value is type boolean. Func-
tions, like attributes, may have zero arguments, in which
case the parentheses are omitted. For example,

fluent Date currentDate;

specifies thatcurrentDate is a fluent function taking no
arguments. A fluent with no arguments may be considered
a variable, and a static function with no arguments is
essentially a constant.

FUNCTION ::= (static | fluent) TYPENAME

( <IDENTIFIER>
| <OPERATOR> ) ( ( PARAMS? ) )?
( ; | { ( CTRSPEC )* } )

PARAMS ::= ( PARAMDEF ( , PARAMS )? )
| :rest PARAMDEF

PARAMDEF ::= QUALTYPE <IDENTIFIER>

4 Constraints
IMAGEbot uses a constraint-based planner to reason about
the complex dependencies and interactions among actions
and objects in the plan. Formally speaking, aconstraintis
simply a relation that holds over a set of variables, so it is
straightforward to view functions, object attribute/value as-
signments, and even types as constraints. However, thus far,
we have only shown how todeclarefunctions, attributes and
types, not (with the exception of enumerated types) how to
definethem. To make use of a constraint reasoning system,
we need definitions, not just declarations. For example, con-
sider the following declaration.

real foo(real x);

Given the value ofx, we know there must be some valuey
= foo(x), but we have provided no way to determine what
that value is.

We provide two alternative ways of specifying the defini-
tion of a constraint; it may be selected from a library of pre-
defined constraint definitions or defined in terms of arbitrary
Java code embedded in the type and function declarations.
The constraint reasoning system supports constraints over
all primitive types as well as Java objects. It can also handle
constraints involving universal quantification, as discussed
in (Golden & Frank 2002).

Constraint definitions can only be given for statics. Any
function defined as a constraint must be determined only by
that constraint; no action may affect it.

4.1 Type constraints
Formally, a type is unary relation that is true for all instances
of the type and false for all non-instances. But in the type
declarations shown above, we did not define what those re-
lations were. It is fine to sayFilename isa string, but
given a string, how do we know if it is a valid filename?

One possibility might be to defineFilename as an enu-
merated type; that is, we list all valid filenames. The obvious
problem with this is that there are, for all practical purposes,
infinitely many of them. A better option is to specify a reg-
ular expression that concisely specifies all valid filenames:

static type Filename isa string {
constraint Matches(true , this , "~[/]+");

}

means that filenames must contain at least one character, and
they cannot contain the character ‘/’. In Unix, this is, in
fact, the only practical limitation on filenames.Matches is a
constraint from the constraint library requiring a string to a
match a regular expression. The keywordthis designates
an instance of the type being defined, in this case a filename.

Constraints can also be defined in terms of inlined Java
code, as discussed in the next section. Type constraints can
also mention attributes of the type. For example, consider
the following definition of Date



/** A date of the form MM/DD/YYYY */
static type Date isa string {

Day day;
Month month;
Year year;
constraint Concat(this , month, "/", day,

"/", year);
}

where Concat is a constraint from the constraint library spec-
ifying that the first argument is the concatenation of the re-
maining arguments. Using this representation, we can de-
scribe a date either as a single string or as a structure with
three attributes, whichever is more convenient. Constraint
reasoning can be used to convert from one representation to
the other.

4.2 Attribute constraints
We can define attributes as constraints as well. One reason
for doing this is to supportprocedural attachment: specify-
ing program code that provides the definition of the attribute.
For example, if we have a DPADL object that corresponds
to a Java object, we must specify what methods to call on
the Java object to determine the values of the attributes as
declared in DPADL:

static type Tile isa object
mapsto tops.modis.Tile {

key string uniqueId {
constraint {

value (this ) := $this .getUID()$;
this (value ) := $Tile.findTile(value )$;

}
. . .

The attributeuniqueId is declared as akey of a (mosaic)
Tile, meaning there is a one-to-one mapping between tiles
and their unique identifiers. Given a tile, we should be
able to obtain its unique identifier, and given a unique iden-
tifier, we should be able to obtain the corresponding tile.
The embedded Java code provides instructions for perform-
ing these mappings. TheuniqueId attribute of aTile can
be determined by calling thegetUID method on theTile,
and aTile object corresponding to a givenuniqueId can
be determined by calling the methodfindTile, with the
uniqueId as an argument. The text preceding the “:=” a
“signature” specifying the return value and parameters of
the following Java code. The keywordvalue refers to the
value of the attribute being defined, in this caseuniqueId.
The keywordthis refers to an object of the type being de-
fined, in this caseTile. Thus,value (this ) means that
given an object of typeTile, we can obtain the value of
theuniqueId attribute by executing the following Java code
(delimited by$). Conversely,this (value ) means that
given auniqueId, we can find the correspondingTile.

The above constraint will only be enforced if there is a
singleton domain for some tile or ID variable. It is also pos-
sible to define constraints that work for non-singleton do-
mains, by indicating that an argument or return value repre-
sents an interval (delimited by[]) or a finite set (delimited
by{}). For example, one attribute of aTile is that itcovers
a given longitude, latitude. Given a particular longitude and

latitude, the constraint solver can invoke a method to find a
single tile that covers it, but it can do even better. Given a
rectangular region, represented by intervals of longitude and
latitude, it can invoke a method to find a set of tiles covering
that region.

/**
* true if this tile covers the
* specified lon/lat range.
*/

boolean covers(real lon, real lat) {
constraint {

. . .
// returns the set of tiles covering
// a given lon/lat range.
{this }([lon], [lat], d=day, y=year,

p=product, value )
:= {$ if (value)

return tm.getTiles(lon.max,
lat.min,
lon.min,
lat.max,
d, y, p);

else return null ; $};
}

}

In this example, the signature is more complicated.
{this }(. . .) means that the return value of the Java code is
a set (specified by{. . .}) of Tiles (specified bythis ). The
first two arguments, lon and lat, are surrounded by[. . .], in-
dicating that the variable domains should be intervals. The
next three arguments, d, y, and p are defined as being equal
to the Tile attributes day, year and product, not shown in
this example. Finally,value is the boolean value of the
covers relation, true if and only if the tile covers the speci-
fied lon/lat.

The Java code is also more complex. Unlike the previ-
ous example, it has a conditional and an explicit return call.
If value is true, then it returns the result of the method
getTiles. Since lon and lat are intervals, we refer to their
maximum and minimum values to specify the bounding box
of interest. Ifvalue is false, it returnsnull , meaning the
set of tiles could not be determined, since there is no method
for returning the tiles outside of a bounding box.

4.3 Function constraints

Functions, like attributes, can have constraints associated
with them, the only difference being that the constraints
cannot reference the keywordthis , because there is no
object to reference. Infix mathematical operators are also
functions, and they can be referenced using a syntax simi-
lar to that used for C++ operator overloading. For example
to specify that the “+” operator can be used to concatenate
strings, we can write

static string operator+ (string s1,
string s2) {

constraint Concat(value , s1, s2);
}



where Concat is a constraint from the constraint library,
specifying that the first argument is the concatenation of the
remaining arguments.

CTRSPEC ::= constraint ( <IDENTIFIER>
( ARGS ) ; ) | { ( JAVACTR )+ } )

JAVACTR ::= ( CTRARG CTRARGS :=
<INLINE_CODE> ; )
| ( [ CTRARG ] CTRARGS :=
[ <INLINE_CODE> ,
<INLINE_CODE> ] ; )
| ( { CTRARG } CTRARGS :=
{ <INLINE_CODE> } ; )

CTRARG ::= <IDENTIFIER> | value | this
CTRARG2 ::= (CTRARG | [ CTRARG ] | { CTRARG } )

( = ADDITIVE )?
CTRARGS ::= ( CTRARG2 [ , CTRARGS ] )

5 Goals
Goals are used primarily to describe data products that the
system should produce. Data product descriptions should
specify the following four attributes:

• Data semantics: the information represented by the data.
That is, what facts about the world can be inferred from
the data contents.

• Data syntax: how the information is coded in the data.
For example, what pixel values in an image are used to
represent the information.

• Time: what time the information pertains to. For exam-
ple, we need to be able to distinguish between rainfall last
week and rainfall last year.

• Location: where the data file should be put or delivered.

Time is an optional argument of all fluents, and specifying
location requires no special syntax. The mapping between
semantics and syntax is specified using the keywordwhen.
For example, to specify that a file represents the temperature
over a particular region, using the LAZEA projection and the
functiontempEncoding to map from temperatures to pixel
values, we could write:

forall int x, int y, real lon, real lat,
real t;

when(tempEncoding(temperature(lon, lat)) = t
&& proj(LAZEA, x, y, lon, lat)
&& 0 <= x < MAXX && 0 <= y < MAXY) {

file.pixelValue(x, y) = t;
}

We will call the expression inside the parentheses following
the keywordwhen the left-hand side (LHS) of the goal, and
we will call the expression in the braces the right-hand side
(RHS).

A when condition describes an implication, but an impli-
cation between conditions that hold at two different times.
The LHS implicitly refers to the initial state (unless an ear-
lier time is specified), and the RHS refers to the final state
(whenever the goal achieved). Because the agent cannot
change the past, the only way to achieve the goal is to make

sure the RHS is satisfied, subject to the conditions given by
the LHS. Formally, the only difference between conditions
in the LHS and conditions in the RHS is the time that they re-
fer to. However, we follow the following conventions when
using goals to describe requested data

• The semantics of the desired data (e.g., temperature) is
specified in the LHS of the goal, because it concerns prop-
erties of the world that hold when the goal is specified (or
earlier), properties that should not (and usually cannot) be
affected by the agent.

• The data syntax (e.g., pixelValue) is specified in the RHS,
because it concerns properties of data that may not exist at
the time the goal is given, properties that must be affected
by the agent to produce the requested data.

• Constraints (e.g.,0 <= x < MAXX) are specified in the
LHS of the goal because, being static, they must hold in
the initial state and cannot be affected by the agent.

• Predicates describing semantics, syntax and constraints
are all disjoint. Predicates describing syntax are static
properties of static objects, which can be created but not
modified.

These conventions are not explicitly enforced by the
language. There are no keywords to indicate “syntactic”
and “semantic” predicates, and it is entirely valid to specify
a goal that relates the syntax of one file to the syntax of
another. However, to ensure sensible behavior from the
planner, these and similar conventions discussed below
should be followed where appropriate.

GOAL ::= goal <IDENTIFIER> ( PARAMS? ) {
( (output | forall | exists) PARAMS

; )* OREXP }
OREXP ::= CONDEXP+ ( || CONDEXP+ )*

CONDEXP ::= ( when ( ANDEXP ) { CONDEXP* }
( else { CONDEXP* } )? ) | EQUAL ;

ANDEXP ::= EQUAL ( && ( EQUAL ) )*
EQUAL ::= RELATION ( ( = | != ) RELATION )*

RELATION ::= ADDITIVE ( ( < | > | <= | >=
) ADDITIVE )*

ADDITIVE ::= MULTIPL ( ( + | - ) MULTIPL )*
MULTIPL ::= UNARY ( ( * | / | % ) UNARY )*

UNARY ::= ( + | - | ! )? PRIMEXP

PRIMEXP ::= ( ANDEXP ) | ( FUNEXP | this )
( . FUNEXP )* | LITERAL

FUNEXP ::= <IDENTIFIER> ( ( ARGS ) )?
LITERAL ::= <INTEGER_LITERAL>

| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL> | null
| true | false

ARGS ::= ADDITIVE ( , ARGS )?

6 Actions
Actions can include sensors (which output data based on
the state of the world) and filters (which output data based
on their inputs), so preconditions and effects describe inputs
and outputs as well as the state of the world. Additionally,



actions must be executable, so the procedure for executing
an action (i.e., Java code) is part of the action description.

ACTION ::= action <IDENTIFIER> ( PARAMS ) {
(( input | forall) PARAMS ; )
| (output OUTPUTS ; )
| PRECOND | EFFECT | EXEC )* }

OUTPUTS ::= PARAMDEF (copyof <IDENTIFIER>)?
( , OUTPUTS)?

6.1 Inputs, outputs and parameters
As in PDDL (McDermott 2000), actions are parameterized,
and parameters are typed. In addition to ordinary parame-
ters, two kinds of variables are recognized as unique and are
treated somewhat differently, namely inputs and outputs.

Outputs represent objects (e.g., files) generated as a result
of executing the action. An output does not exist before the
corresponding action is executed, and is always distinct from
all other objects.

Inputs represent objects that are required by the action
but are not required to exist after the action has been exe-
cuted. Inputs may come from outputs of other actions or
they may be preexisting objects. In the former case, all pre-
conditions describing attributes of a given static input must
be supported by the same action, since only one action can
have produced the output, and once it is created, no action
can change it.

Ordinary parameters are essentially like the parameters
passed to method or function calls in C or Java; they refer
to primitive values or objects that may exist before the ac-
tion is executed and may persist afterward. If they represent
fluents, the action may change their values.

In addition to parameters, inputs and outputs, actions can
refer to universally quantified variables and introduce vari-
ables corresponding to new objects with thenew keyword,
discussed in Section 6.3.

6.2 Preconditions
Preconditions describe the conditions that must be true of
the world and of the inputs in order for the action to be ex-
ecutable. Thus, action preconditions need to reference the
input variables and the prior world state, but cannot refer-
ence the output variables, which describe objects that don’t
exist in the prior state.

Low-level actions, such as filters, can be described purely
in terms of the syntactic properties of the input files. For ex-
ample, an image-processing operation doesn’t care whether
the pixels of the input image represent temperatures in Mon-
tana or a bowl of fruit. All that matters are the values of the
pixels. Thus, the preconditions for these actions should refer
only to properties of the data that hold in the prior state. Sim-
ilarly, simple sensors depend only on the immediate state of
the world, so their preconditions should only refer to condi-
tions of the world that hold in the prior state.

However, some high-level actions, such as ecosystem
models, expect their inputs to represent certain information
about past states of the world, such as temperature or pre-
cipitation, so it is appropriate for the preconditions of these
actions to specify the information content of their inputs, not
just the structure, and to reference states other than the prior

state. In other words, preconditions, like goals, can include
metadata descriptions, which are described using the key-
wordwhen.

The LHS of awhen precondition, like the LHS of a goal,
refers to the initial state. The RHS, however, rather than
referring to the final state, refers to the start of execution of
the corresponding action. Conventions for describing data
inputs in preconditions are the same as the conventions for
describing goals: The LHS specifies the semantics of the
data file and the RHS specifies the syntax. Any constraints
should appear in the LHS.

Preconditions are introduced with the keyword
precond , and introduce a condition, which may be
disjunctive.

PRECOND ::= precond OREXP

6.3 Effects
Effects, introduced with the keywordeffect , are used
primarily to describe the outputs generated by an action.
Outputs depend on the state of the world (in the case of
sensory actions) or the inputs (in the case of filters), so
effects need to be able to reference both the prior state and
next state and both the input and output variables.

EFFECT ::= effect ( WHENEXP )+

Conditional effects Like goals and preconditions, condi-
tional effects are introduced using the keywordwhen, but
here the LHS refers to the prior state (and input variables),
not the initial state. The RHS describes the next state and
output variables, so the combination of the two describes
how the output depends on the input (or on the state of the
world).

As with goals, there are conventions for describing ef-
fects.

• Sensors are described using conditional effects in which
conditions on the LHS are either constraints or fluents de-
scribing the semantics of the data, and conditions on the
RHS are statics describing the syntax of the output data.

• Filters are described using conditional effects in which
conditions on the LHS are either constraints or statics de-
scribing the syntax of the input data, and conditions on the
RHS are statics describing the syntax of the output data.

These conventions are not enforced by the language, and it is
perfectly acceptable to write other kinds of actions, includ-
ing, for example, ones that change the world based on the
content of an input file.

Stripping away the syntactic sugar, every atomic RHS ex-
pression involves setting the (possibly boolean) value of a
function or attribute or creating a new object. A static at-
tribute can only be set if it is an attribute of a newly created
object. We depart from the C++/Java syntax and use the no-
tation “:=” to denote assignment and “=” to denote equality.

For example, to describe a threshold action, which sets
output pixels to either BLACK or WHITE, depending on
whether the corresponding input pixels are below or above a
given thresholdthresh, we can write:



action threshold (unsigned thresh) {
input Image in;
output Image out copyof in;
forall Unsigned x, Unsigned y;
effect when ((x < in.xSize)

&& (y < in.ySize) {
when (in.valueAt(x, y) <= thresh) {

out.valueAt(x, y) := BLACK;
} else {

out.valueAt(x, y) := WHITE;
}

}
}

The keywordelse has the same meaning as in C or Java.
The keywordcopyof is explained below.

WHENEXP ::= (when ( ANDEXP ) { ( WHENEXP )* }
( else { ( WHENEXP )* } )? )
| CONSEQNT

CONSEQNT ::= ASSIGNMNT | NEWDECL

ASSIGNMNT ::= CFUN ( . CFUN )* ( :=
( EQUAL | NEWEXP ) )? ;

CFUN ::= <IDENTIFIER> ( ( CARGS ) )?
CARGS ::= ( ADDITIVE | NEWEXP )

( , CARGS )?

Object creation and copying Output variables implicitly
describe newly created objects, but it is sometimes neces-
sary to explicitly refer to object creation in action effects.
For example, an output may be a complex object, such as a
file archive or a list, with an unbounded number of complex
sub-elements. Since each of those sub-elements is (possi-
bly) newly created, we need some way of describing their
creation. We do so using the keywordnew.

Additionally, newly created objects may be copies of
other objects, possibly with minor changes. Listing all the
ways the new objects are the same as the preexisting ob-
jects can be cumbersome and error-prone, so we would like
to simply indicate that one is a copy of the other, and then
specify only the ways in which they differ. We do so using
thecopyof keyword.

Suppose we have an action whose input,in, is a collection
of JPEG files and whose output,out, is a new collection, in
which the files from the input are compressed with quality
of 0.75.

forall Image orig;
when(in.contains(orig)) {
out.contains

(new Image copyof orig {
quality := min(orig.quality, 0.75); });

}

When an object is copied, all attributes of the original ob-
ject are inherited by the copy, unless explicitly overridden.
For example, the new Image is identical to the original in
every way, except in quality, which is set to 0.75. Note that
this is one way in which attributes of objects are different
from other relations on objects.in.contains(orig) is an
attribute ofin, but not an attribute oforig, so afterorig
is copied,in.contains(copy) is not true but, for example,

copy.format = JPEG is true.1

The copy and the original need not be the same type, as
long as they inherit from or implement a common parent
type. All attributes common to both types are copied.

NEWDECL ::= new QUALTYPE <IDENTIFIER>
(copyof <IDENTIFIER> )?
( ({ ( ATTRIBUTES )* } ) | ; )

NEWEXP ::= new QUALTYPE

( copyof <IDENTIFIER> )?
( ( { ATTRIBUTES * } ) | ; )

ATTRIBUTES ::= FUNEXP := ( EQUAL ;
| NEWEXP )

6.4 Execution
The action descriptions include instructions for actually
executing the action. These instructions are written in
Java, which enables us to write actions that correspond to
any operation that can be performed by the Java runtime
environment, including invoking methods on objects or
invoking system calls. All parameters, inputs and outputs
may be referenced in the Java code, though outputs, being
uninitialized prior to execution, must be initialized in the
Java code before being referenced.

EXEC ::= exec <INLINE_CODE> ;

7 States
A typical component of planning problems is a specification
of the “initial state,” from which the goal must be achieved.
In IMAGEbot, the state is stored in a database and is updated
based on observations during plan execution. A significant
amount of state information is also communicated through
the execution of inlined code during constraint reasoning.
Since many aspects of the world are highly dynamic, we
rely more on information obtained dynamically as a result
of sensing than on static information contained in a file.

However, there is still value in being able to provide static
state information, especially concerning metadata descrip-
tions for stable data sources. The language provides the
ability to define multiple named states through thestate
keyword. States may be thought of as dumbed-down actions
that have no preconditions and can only be “executed” in
the initial state. As with goals, metadata descriptions are
specified using thewhen keyword. As with goals, the LHS
can refer to the initial state or earlier, but the RHS refers
to the initial state, not the final state. The conventions for
describing the semantics and syntax of data are the same
as they are for goal descriptions. State information stored
in the database, which includes information the agent has
“learned” over time, has the same form as that introduced
using thestate keyword.

STATE ::= state <IDENTIFIER> {
( forall PARAMS ; )
| WHENEXP )+ }

1In contrast, in ADLIM, all relations involving the original were
assumed to hold for the copy unless explicitly overridden, so it
would be necessary to declare thatin.contains(copy) is false
after copyingorig to copy.



8 Conclusions and Related Work
We have described DPADL, an action language for data pro-
cessing domains, which is used in the IMAGEbot system.
The parser for the language, and a planner that supports
the language, are fully implemented, and we are developing
DPADL descriptions for the TOPS ecosystem forecasting
system. Currently, a subset of TOPS, dealing with MODIS
satellite data, is supported.

The focus of this paper has been to describe DPADL as
a programming language, focusing on language syntax and
features rather than semantics and formal properties. This is
based on our belief that writing planning domains to auto-
mate data processing tasks is at its heart programming. Our
planner-based approach reduces the need for programming
from writing one script for each task to writing one domain
description for all tasks,2 but it is still necessary to “pro-
gram” the one domain. The language should support the
features needed to program effectively.

Throughout the paper, we have described conventions for
describing data and data-processing actions. These conven-
tions are not enforced at the language level, because doing
so would limit the flexibility of the language without giv-
ing much advantage, but we have found that following these
rules makes it simple for a planner to infer the effects of
chaining multiple data-processing actions together. “Sim-
pler” representations, in which data semantics is encoded
directly in (the RHS of) a goal or effect, conversely, make
it much less obvious what should happen when actions are
chained together.

It is always attractive to use a standard language rather
than defining a new one, and there are popular languages
for describing planning domains, web services and metadata
that we considered.

PDDL (McDermott 2000), the language devised for the
AIPS programming competitions, has become a standard for
describing planning domains. Unfortunately, PDDL is not
ideal for describing data processing domains. It provides
no support for object creation or copying, explicit inputs or
outputs, metadata, or integration with a run-time environ-
ment or constraint reasoning system. There are also syntac-
tic disadvantages, such as lack of object-oriented notation,
which could be worked around but are obstacles to clean do-
main descriptions. We opted instead to base our language
on the well-known syntax of C++ and Java, since many pro-
grammers are familiar with that syntax, reducing the learn-
ing curve for the language. An additional motivation was
that action descriptions and program code both describe the
same things — state change, conditional on the current state,
so using similar syntax for both is appealing.

DAML-S (Ankolenkar et al. 2002) and WSDL (Chris-
tensenet al. 2002) are languages for describing web ser-
vices, both based on XML. DAML-S is the more expres-
sive, allowing the specification of types using a description
logic and allowing one to specify preconditions and post-
conditions, which might be used by a planning agent. How-
ever, we don’t believe that description logics are expressive
enough to describe the data-processing operations that we

2In the words of Dan Weld, “A softbot is worth a thousand shell
scripts.”

need to support. Another disadvantage of these languages
from a usability perspective is that XML files tend to be ver-
bose and difficult for humans to read. XML is ideal for stor-
ing information in a form that can readily be shared by com-
puter programs, but it is human-readable only in the limited
sense that it is written in ASCII text.

The Earth Science Markup Language (ESML;
http://esml.itsc.uah.edu) is another language based on
XML, under development at the University of Alabama
in Huntsville to provide metadata descriptions for Earth
Science data. Unlike DAML-S and WSDL, ESML is well
suited to describing the complex data structures that appear
in scientific data. Unlike DPADL, it is only intended to
describe data files, not data processing operations, but it
does provide explicit support for describing the syntax
and semantics of data files and allows the specification
of constraints in the form of equations. Although it is
less expressive and more specialized than DPADL, it is a
promising metadata standard for Earth Science. In the near
future, we hope to support conversion between ESML and
DPADL metadata specifications.

Near the far end of the expressiveness spectrum, the situ-
ation calculus (McCarthy & Hayes 1969) provides plenty of
expressive power, but at a price: planning requires first-order
theorem proving. We opted instead to make our language as
simple as possible, but no more so. DPADL does not sup-
port domain axioms, nondeterministic effects or uncertainty
expressed in terms of possible worlds, and much of the ap-
parent complexity of the language is handled by a compiler,
which reduces complex expressions into primitives that the
planner can cope with. Despite the superficial similarity
to program synthesis (Stickelet al. 1994), DPADL action
descriptions are not expressive enough to describe arbitrary
program elements, and the plans themselves do not contain
loops or conditionals.

Of the many planning domain description languages that
have been devised, the closest to DPADL is ADLIM (Golden
2000), on which it is based. Advances over ADLIM include
tight integration with the run-time environment (Java) and
constraint system and a Java-like object-oriented syntax that
makes it natural to describe objects and their properties. As
discussed in Sections 2 and 6.3, this is not just syntactic
sugar, but encodes valuable information used by the plan-
ner.

Collage (Lansky & Philpot 1993) and MVP (Chienet
al. 1997) were planners that automated image manipula-
tion tasks. However, they didn’t focus as much on accurate
causal models of data processing, so their representation re-
quirements were simpler.

The EnVironmEnt for On-Board Processing (EVE) (Tan-
ner et al. 2001) is an execution framework for data-
processing plans to be run on-board an Earth-orbiting satel-
lite. Unlike IMAGEbot, EVE provides no planning capabil-
ities; plans are generated by humans.
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